34. S. A. Novikov and L. M. Sinitsyna, "Effect of strain rate in spall on the magnitude of the breaking stresses," Fiz. Met. Metalloved., 28, No. 6 (1969).
35. B. R. Breed, C. L. Mader, and D. Venable, "Technique for the determination of dynamic tensile-strength characteristics," J. Appl. Phys., 38, No. 8 (1967).
36. B. A. Tarasov, "Temporal dependence of the strength of organic glass under impact loading," Probl. Prochn., No. 12 (1972).
37. V. I. Betekhtin and S. N. Zhurkov, "Time and temperature dependence of the strength of solids," Probl. Prochn., No. 2 (1971).
38. B. Steverding and S. H. Lehnigk, "Response of cracks to impact," J. Appl. Phys., 41, No. 5 (1970).
39. A. G. Ivanov and S. A. Novikov, "Method of capacitive transducer for recording the instant velocity of motion of the surface," Prib. Tekh. Eksp., No. 1(7) (1963).
40. N. A. Zlatin, S. M. Mochalov, G. S. Pugachev, and A. M. Bragov, "Laser differential interferometer (theory of the instrument and example of application)," Zh. Tekh. Fiz., 49, No. 9 (1973).
41. M. S. Kachan, Yu. V. Kiselev, and Yu. A. Trishin, "Interaction of shock waves with the interface of colliding bodies," Fiz. Goreniya Vzryva, 11, No. 5 (1975).
42. Ya. B. Zel'dovich and Yu. P. Raizer, The Physics of Shock Weves and of High-Temperature Hydrodynamic Phenomena [in Russian], Nauka, Moscow (1966).
43. M. S. Kachan and Yu. A. Trishin, "Compressional and tensional waves upon collision of rigid bodies," Fiz. Goreniya Vzryva, 11, No. 6 (1975).
44. L. K. Zarembo and V. A. Krasil'nikov, Introduction to Nonlinear Acoustics [in Russian], Nauka, Moscow (1966).

SHOCK ADIABATS AND PROFILES OF WEAK SHOCK WAVES IN METALS
N. S. Kozin and N. K. Kuz'mina

UDC 534.222 .2

1. Description of the Parameters of the Medium

The mathematical model of an isotropic medium, suggested in [1-3], supposesthat the substance is defined by an internal energy E per unit mass of substance and by a characteristic time τ of relaxation of tangential stresses. The internal energy E is relatedby the equation of state of the medium

$$
\begin{equation*}
E=E(\alpha, \beta, \gamma, S) \tag{1.1}
\end{equation*}
$$

with the density of the entropy S and the quantities α, β, γ. The parameters α, β, and γ are the logarithms of the "elastic" extensions k_{1}, k_{2}, and k_{3} along the principal axes of elastic deformation

$$
\alpha=\ln k_{1}, \beta=\ln k_{2}, \gamma=\ln k_{3} .
$$

The equations of state of the type (1.1) are given in [2] for iron (α-phase), aluminum, copper, nickel, lead, and titanium. The characteristic time of relaxationof tangentialstresses is determined by the formula for its dependence on the stressed state of the medium

$$
\begin{equation*}
\tau=\tau(\sigma, T) \tag{1.2}
\end{equation*}
$$

where T is the temperature; $\sigma=(1 / \sqrt{2}) \sqrt{\left(\sigma_{1}-\sigma_{2}\right)^{2}+\left(\sigma_{2}-\sigma_{3}\right)^{2}+\left(\sigma_{3}-\sigma_{1}\right)^{2}}$ is the intensity of the tangential stresses (σ_{1}, σ_{2}, and σ_{3} are the principal stresses). The form of this relation is given in [3] for iron, aluminum, copper, and lead.

When calculating shock waves, a relation is used which is a variant of the corresponding formula from [3]:

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki 1 Tekhnicheskoi Fiziki, No. 4, pp. 124-132, July-August, 1977. Original article submitted April 27, 1976.

TABLE 1

	Fe	Al	Cu	Pb	Ni	Ti
$\rho^{0}, \mathrm{~g} / \mathrm{cm}^{3}$	7,84	2,785	8,90	14,34	8,86	4,51
$b_{0}, \mathrm{~km} / \mathrm{sec}$	2,866	2,941	2,141	0,812	2,485	2,963
$c_{0}, \mathrm{~km} / \mathrm{sec}$	5,726	6,208	4,697	2,244	5,636	5,834
$\mu, \mathrm{~g} / \mathrm{mole}$	55,85	26,98	63,54	207,21	58,71	47,90

$$
\begin{align*}
& \tau=\tau_{0}\left(\frac{\rho^{0} b_{0}^{2}}{\sigma n_{0}}\right)^{n(T)-1} \exp \left(\mu \frac{U(T)}{R T}\right), \\
& n^{-1}(T)=n_{1}\left[\left(\frac{T}{\theta_{0} n_{2}}-v\right)^{2}+n_{3}\right], \tag{1.3}\\
& U(T)=c_{0}^{2} \frac{T}{\theta_{0} n_{\star}}\left(1-\frac{T}{\theta_{0} n_{5}}\right) n(T),
\end{align*}
$$

where μ is the atomic weight; $R=8.31 \cdot 10^{7} \mathrm{~g} \cdot \mathrm{~cm}^{2} / \mathrm{sec}^{2} \cdot \mathrm{deg} \cdot$ mole is the universal gas constant; ρ° is the density of the substance in the normal state; c_{0} and bo are the longitudinal and transverse wave velocities in the normal state. The values of p^{0}, b_{0}, co, and μ for iron, aluminum, copper, lead, nickel, and titanium are given in Table 1 . The interpolated coefficients $\tau_{0}, n_{0} \mathrm{n}_{5}$ for iron, aluminum, copper, and lead are given in Table 2 . For lead, $v=0$; for iron, aluminum, and copper, $v=1$.

The formula in [3] for the dependence of the time of relaxation of the tangentialstresses on the stressed state of the medium differs from formula (1.3) in the correction factor of the type $\exp (\Phi(\sigma) / R T)$, where $\Phi(\sigma)$ is some specified function [3]. This correction factor was introduced in [3] in order to describe the function $\tau(\sigma, T)$ over the range of deformation rates $\varepsilon \approx 10^{7} \mathrm{sec}^{-1}$, which corresponds to $\tau \approx 10^{-7} \mathrm{sec}$. Calculations of the plastic adiabats are limited to values of $\tau \geqslant 0.5^{*} 10^{-6} \mathrm{sec}$, at which, as the calculations showed, the effect of the correction factor is insignificant.

2. Shock Waves

The system of differential equations describing the motion of a viscoelastic medium parallel to a specified x axis in the space (x, y, z) is considered in [4], and which is a onedimensional variant of the system of equations suggested in [1]. Suppose that $\rho=\rho^{0} \exp (-\alpha$ $-\beta-\gamma$) is the density, and u is the velocity along the x axis. The principal stresses σ_{x}, σ_{y}, and σ_{z} are related to α, β, and γ by the formulas $\sigma_{x}=\rho E_{\alpha}, \sigma_{y}=\rho E_{\beta}$, and $\sigma_{z}=\rho E_{\gamma}$.

If we denote by w the flow of material through the shock wave, $w=\rho u$ [Mach number, $M=$ $\left.w / \rho_{o} c_{o}\right)$], then, as shown in [4], the values of the parameters during passage through the shock wave are connected by the relations

$$
\begin{gather*}
p_{1}-p_{0}=-w^{2}\left(\frac{1}{\rho_{1}}-\frac{1}{\rho_{0}}\right), \\
u_{1}-u_{0}=w\left(\frac{1}{\rho_{1}}-\frac{1}{\rho_{0}}\right), \\
E_{1}-E_{0}+\frac{p_{1}+p_{0}}{2}\left(\frac{1}{\rho_{1}}-\frac{1}{\rho_{0}}\right)=0, \tag{2.1}\\
\alpha_{1}=\beta_{1}=\gamma_{1}=\frac{1}{3} \ln \rho^{0} / \rho_{1}, \alpha_{0}=\beta_{0}=\gamma_{0}=\frac{1}{3} \ln \rho^{0} / \rho_{0}, \\
D=u_{1}-w / \rho_{1}=u_{0}-w / \rho_{0},
\end{gather*}
$$

where $p=-\sigma_{x}$ is the stress along the axis x. The subscripts 0 and 1 denote the values of the quantities in front of the wave and behind the wave, where $\sigma_{x}=\sigma_{y}=\sigma_{z}=-p$. Knowing

TABLE 2

	$\tau_{0} \cdot 10^{-5}$ \sec	$n_{0} \cdot 10^{-4}$	n_{1}	n_{2}	n_{3}	$n_{4} \cdot 10^{-3}$	n_{0}
Fe	14,64	2,6	0,1036	1,545	0,4474	0,14	0,2654
Al	41,15	1,06	0,305	2,57	0,0327	0,0847	2,47
Cu	23,98	1,96	0,0184	0,955	1,902	0,14	7,22
Pb	13,5	0,585	0,00804	1	$1,24^{4}$	0,485	5,464

TABLE 3

	Fe	Al	Cu	Pb	Ni	Ti
p_{1}	2,512	3,143	2,512	2,867	3,524	5,739
p_{2}	4,829	8,030	8,120	7,586	13,90	20,35
D_{1}	1,227	1,530	1,459	1,432	1,812	2,539
p_{3}	3,545	4,230	3,920	3,994	6,204	4,909
D_{2}	1,675	2,005	1,887	1,985	2,970	2,208
p^{*}, kbar	9,406	3,845	7,910	1,859	-	-
η^{*}	0,9964	0,9965	0,9960	0,9967	-	-
$u^{*}, \mathrm{~km} / \mathrm{sec}$	0,02082	0,02185	0,01877	0,007356	-	-
M^{*}	1,005	1,006	1,010	1,004	-	-
k	3871	7234	1242	2638	-	-
$\Delta t \cdot 10^{-6}, \mathrm{sec}$	0,5	0,5	0,5	1,0	-	-
$L, \mathrm{~cm}$	0,0165	0,0242	0,0289	0,0485	-	-

the state of the substance ahead of the wave and the mass flow w, by means of Eq. (2.1) the state of the substance behind the wave can be determined. The Hugoniot adiabat in the plane (p, 1/p)

$$
\begin{equation*}
E-E_{0}+\frac{p+p_{n}}{2}\left(\frac{1}{\rho}-\frac{1}{\rho_{0}}\right)=0, \alpha=\beta=\gamma \tag{2.2}
\end{equation*}
$$

as shown in [4], has only two points of intersection with the Michelson straight line

$$
p-p_{0}=-w^{2}\left(\frac{1}{\rho}-\frac{1}{\rho_{0}}\right), \alpha=\beta=\gamma
$$

which correspond to the initial and final state.
On the basis of the calculations carried out, interpolation formulas were constructed for the Hugoniot hydrodynamic adiabat (2.2) for shock waves propagating through a substance existing under normal conditions $\rho=\rho^{\circ}$ and $T=300^{\circ} \mathrm{K}$:

$$
\begin{align*}
& \frac{p}{\rho^{0} c_{v}^{2}}=1-\eta+p_{1}(1-\eta)^{2}+p_{2}(1-\eta)^{3} \tag{2,3}\\
& \eta=\frac{\rho^{0}}{\rho}, 0,85 \leqslant \eta \leqslant 1, c_{v}=\sqrt{c_{n}^{2}-\frac{4}{3} b_{0}^{2}}
\end{align*}
$$

If the velocity of the substance ahead of the shock wave is equal to wo then the Hugoniot adiabat (2.2) is represented in the variables p and u by the formula

$$
\begin{equation*}
p\left(\rho^{\mathrm{c}} c_{v}^{2}\right)=\zeta \bar{D}, \tag{2.4}
\end{equation*}
$$

where $\zeta=\left(u-u_{0}\right) / c_{V} ; \bar{D}=D / c_{V}$ and $0 \leqslant u-u_{0} \leqslant 1 \mathrm{~km} / \mathrm{sec}$. The interpolation formula for the dependence of the wave velocity on the velocity of the substance behind the front has the form

$$
\begin{equation*}
D / c_{v}=1+D_{1} \zeta, 0 \leqslant u-u_{0} \leqslant 1 \mathrm{~km} / \mathrm{sec} . \tag{2,5}
\end{equation*}
$$

The values of the coefficients p_{1}, p_{2}, and D_{1} are given in Table 3 ,

Fig. 1

TABLE 4

M	$\stackrel{\rho^{0}}{\rho}$	$-\sigma_{x}$, kbar	$-\sigma_{y^{\prime}} \mathrm{kbar}$	T, ${ }^{\circ} \mathrm{K}$	$\begin{aligned} & \mathrm{u}, \mathrm{~km} / \\ & \text { sec } \end{aligned}$	$\begin{aligned} & \mathrm{E} \cdot 10^{2} \mathrm{~km} \mathrm{sec}^{2} \\ & \mathrm{sec}^{2} \end{aligned}$	$-\beta \cdot 10^{2}$
1,17	0,998	3,00	0,85	301	0,0149	0,02כ1	$-0,079$
1,02	0,996	4,45	2.33	303	0,0252	0,0458	-0,012
0,970	0,99.'	6,03	3,94	304	0,0.361	0,0793	0,06
0,940	0,902	7,62	5.55	305	0,0470	0,121	0,131
0,924	0.990	8,99	6.94	307	0,0563	0.172	0.193
0,903	0.984	13.7	11,7	310	0.0878	0,400	0.398
0,809	0.970	24.9	23,0	320	0,0160	1,294	0,856
0,910	0,960	35,5	33,7	329	0,296	2,569	1.263
0.920	0.950	46.2	44,5.	338	0,290	422	$1,6 \pm$
0,952	0,940	-6,3	54,6	347	0,349	6,11	1.99
0,950	0,930	67,6	66.1	337	0,413	8.56	2.36
0,960	0.920	79,3	77.8	368	0.478	11,4	2,7i
0,980	0,910	92,9	91,5	382	0,550	15,1	3,10
0,990	0,900	106	104	396	0,616	19,0	3.45
1,01	0.890	121	119	414	0.691	23,9	3,83
1,03	0.880	137	136	434	0.758	29,5	4,22
1,05	0.870	154	153	458	0,848	36,0	4,61
1,07	0,860	172	171	485	0.931	43,3	4,99
1,09	0,850	191	190	a16	1,02	51,6	5.39
1,11	0,840	212	211	552	1,10	61.0	5,79
1.13	0.830	234	933	594	1,19	71,6	6,18
1,16	0,820	258	257	642	1,29	83,4	6,59

3. Characteristics of the Shock Wave Profile

The shock wave profile, as shown in [4], has two special features. First of all, shock waves moving with supersonic velocity ($M>1$) contain a discontinuity on the profile, corresponding to a sudden elastic change of state of the substance from the original state into some intermediate state. When $M<1$ (subsonic waves) there is no sudden change.

The interpolation formulas, similar to Eqs. (2.3)-(2.5), for the shock adiabat of an elastic wave propagating through a substance existing under normal conditions have the form

$$
\begin{align*}
& \frac{p}{\rho^{0} c_{0}^{2}}=1-\eta \div p_{3}(1-\eta)^{2}, 0,9 \leqslant \eta \leqslant 1 ; \\
& \frac{p}{\rho^{0} v_{0}^{2}}=\xi D^{*}, \xi=\frac{u-u_{n}}{c_{n}}, D^{*}=\frac{D}{c_{0}}, 0 \leqslant u-u_{0} \leqslant 0.5 \mathrm{~km} / \mathrm{sec} ; \tag{3.1}\\
& D / c_{0}=1+D_{2} \xi, 0 \leqslant u-u_{0} \leqslant 0.5 \mathrm{~km} / \mathrm{sec} .
\end{align*}
$$

Values of the interpolation coefficients p_{3} and D_{2} are given in Table 3.

TABLE 5

| | ρ^{0} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

The second special feature is associated with the nonlinear dependence of the relaxation time τ on the parameters of the medium (1.3). For metals these critical dependencies lead to the fact that on the wave profile sections are formed with a rapid change of the quantities representing an individual wave. This section, on waves moving with supersonic velocity, is located after the elastic discontinuity.

In experimental investigations, where a similar structure of the front has been observed repeatedly (see bibliographies in $[4,5]$), the elastic wave is called an elastic precursor, and the wave following behind it is called the plastic wave. Following the established terminology, we shall call the section of rapid change of quantities on the profile the plastic wave.

A procedure is described in [4], by means of which the plastic wave can be discriminated in an individual wave. For this, we specify the characteristic duration Δt of the plastic wave and we construct in the plane ($p, 1 / \rho$) a curve, which in accordance with [4] we shall call the plastic adiabat corresponding to $\tau=\Delta t$. The sense of this procedure consists in that the plastic waves of width $\sim \Delta t$ are changed by discontinuities, for which the magnitudes of the discontinuities are calculated by means of the plastic adiabat. Figure l, together With the hydrodynamic and elestic adiabat (curves 1 and 2), shows the plastic adiabats corresponding to $\Delta t=10^{-5} \mathrm{sec}$ and $\Delta t_{1}=0.5 \cdot 10^{-6} \mathrm{sec}$ (curves 3 and 4) for aluminum, which exists in normal conditions in front of the wave. It can be seen from Fig. 1 that the plastic adiabats cordesponding to $\Delta t=10^{-5} \mathrm{sec}$ and $\Delta t_{1}=0.5 \cdot 10^{-6} \mathrm{sec}$ differ very little despite the magnitude of Δt being changed by a factor of 20 .

Calculations carried out have enabled tables to be compiled of plastic adiabats for shock waves propagating through substances existing under normal conditions. Table 4 corresponds to the plastic adiabat of aluminum, Table 5 to copper, Table 6 to iron, and Table 7 to lead. The magnitude of Δt for lead is taken to be equal to $10^{-6} \mathrm{sec}$, and for the other substances it is equal to $0.5^{\cdot} \cdot 10^{-6} \mathrm{sec}$. Table 3 also gives the values of p^{*}, n^{*}, and u^{*}, specifying the point of intersection of the plastic adiabats of Tables $4-7$ with the corresponding elastic adiabats.

In addition to the shock adiabats mentioned, the shock adiabats of a substance already subjected to attack can be considered. Thus, graphs and tables are given in [6-9] of shock adiabats for shock waves propagating through a substance previously compressed by a shock wave up to values of ρ° / ρ equal to $0.95-0.97$.

4. Structure of Shock Waves

Following [4], let us consider now the possible structures of the profile of shock waves and the method of discriminating plastic waves.

TABLE 6

M	$\frac{\rho^{0}}{\rho}$	$-\sigma_{x}$, kbar	$-\sigma_{y}$, kbar	T, ${ }^{\circ} \mathrm{K}$	$\mathrm{u}, \mathrm{km} /$ sec	$\mathrm{E} \cdot \frac{10^{2} \mathrm{~km}^{2} /}{\mathrm{sec}^{2},{ }^{2}}$	- $\beta \cdot 10{ }^{2}$
1,04	0,997	8,32	3,61	302	0,0178	0,0262	-0,021
0.96	0,995	11,8	7,16	303	0,0275	0,0482	0,048
0.92	0,993	15,4	10,7	304	0,0370	0.0789	0,116
0,90	0,990	20,5	15,9	306	0,0509	0,140	0,215
0,88	0,985	29,5	24, ${ }^{\text {a }}$	308	0,0747	0,290	0,385
0,87	0,980	38,2	33,6	311	0.0976	0,487	0,547
0,87	0,970	55,8	51,2	317	0,143	1.03	0,863
0,88	0,960	76,9	72,5	324	0,196	1,93	1,23
0,88	0.950	-99,9	95,6	332	0,252	3,19	1,61
0,89	0.940	123	119	340	0,307	4,73	1,98
0,90	0.980	145	149	349	0,359	6,46	2,32
0,91	0,920	171	167	381	0,416	8,68	2,69
0,92	0,910	196	192	37.4	0,473	11.2	3,05
0,94	0.900	223	219	388	0,531	14,1	
0,95	0,890	253	250	406	0,595	17,7	3.81
0.96	0,880	285	282	428	0,660	21,8	4,20
0,98	0,870	315	312	450	0,720	-5,9	4,56
0,99	0.860	350	347	478	0,788	31.1	4,95
1,00	0.850	386	383	511	0.858	30.8	5,35
1,02	0.840	425	422	549	0.929	43.2	5,75
1.04	0.830	465	403	592	1.09	50.3	6,15
1,05	4,8:0	508	506	642	1.08	58,1	6,56

TABLE 7

M	$\frac{p^{\circ}}{0}$	$-\sigma_{x}$, kbar	${ }^{-\sigma_{y}}$. kbar	T, ${ }^{\circ} \mathrm{K}$	$\mathrm{u}, \mathrm{km} /$ sec	$\mathrm{E} \cdot 10^{2}, \mathrm{~km}^{2}$	$-\beta \cdot 10^{2}$
1,02	0.60	1,72	1.21	303	0,1067	0,0023	-2.0105
0.98	0.995	230	2,15	304	0.008	0.003	0,0576
0.96	0.993	3.59	3,69	306	0,0149	0.014	0,126
0.95	0.990	4,89	4,39	388	0,005	0.009	0.218
0,95	0983	5.45	4, 97	309	0,030	0,0264	0,260
0,53	0.979	10.6	10,1	319	0,640	¢nege	0.614
0,95	0.975	12,6	12,	82	0.052	0.139	$0.74{ }^{\text {a }}$
0,96	0.970	15.0	14.5	526	0,062 2	0.195	0,400
0.96	0.965	17.9	17.4	33.2	0,0740	0.274	1,03
0.97	0.930	20,7	20, 1	236	0,0848	0,360	1,25
0,98	0.453	29.7	2, 1	542	0,3966	0.467	1,44
0,98	0.950	26,7	26,1	348	0,108	0,585	1,61
0.99	0,945	29,7	29.2	353	0,120	0.716	1,79
-1,00	0.840	32.9	$3 \mathrm{3}, 2$	3.59	0.131	0,860	1,96
1,00	0.935	36,3	35,7	366	0,144	1, 04	2,15
1,01	0.980	39.8	39.3	373 379	0,157	4,23	2,34
1,02	0.925	43,1 46.8	4	379 387	0.468	1,42	2,50
1.03	0,920 0.915	46.8 50.6	46.2 50.0	387 385	0,181	1,65 1,90	2,89 2.88
1,04 1,04	0,915 0,910	50,6	50,0 33,5	395 463	0.190 0,207	1,90 2,14	2.88 3,05

For subsonic shock waves ($M<1$), the shock wave profile shown in Fig. 2 is characteristic where, for lead ($M=0.975$), computed graphs of $-\sigma_{x}$ (curve 1) and $-\sigma_{y}$ (curve 2) are shown as a function of distance for a fixed instant of time. There is a section ($\mathrm{P}_{1}, \mathrm{P}_{2}$) on the wave profile with large stress gradients, corresponding to a reduction of magnitude of the relaxation time. Points where $\tau=10^{-3}$ and 10^{-6} sec are denoted by small circles and crosses, respectively. It can be seen from Fig. 2 that the plastic wave can be distinguished, for example, by the points P_{2} (onset of wave) and P_{1} (end of wave); in this case, $\tau=\Delta t=10^{-6} \mathrm{sec}$.

For waves with velocities slightly exceeding the velocity of sound, $1<M<M^{*}$ (the quantity M^{*} is tabulated in Table 3), the structure of the wave profile has the form depicted in Fig. 3 (aluminum, $M=1.00552$).

On the profile ahead of the plastic wave ($\mathrm{P}_{1}, \mathrm{P}_{2}$), the nature of which is the same as for subsonic shock waves, there is an elastic discontinuity Q, the magnitude of which is determined by formulas (3.1). Curves 1 and 2 of Fig. 3 depict $-\sigma_{x}$ and $-\sigma_{y}$, respectively.

If we define the distance ΔZ from the elastic precursor to the plastic wave ($\mathrm{P}_{1}, \mathrm{~Pa}_{\mathrm{a}}$) as the distance from the elastic precursor Q to the point on the wave profile nearest to it at which $\tau=\Delta t$ (point P_{2}), then in the range of Mach numbers $1<M<M^{*}$, Δl varies within the limits $\infty>\Delta I>0$.

Fig. 2

Fig. 3

Figure 4 (curve 1) shows the graph of the function $\Delta Z(M)$ for aluminum in the range 1.005 $<M<1.006$. The quantity Δt was assumed in the calculations to be equal to $0.5 \cdot 10^{-6} \mathrm{sec}$. For comparison, Fig. 4 (curve 2) shows also the magnitude of the distance between points on the profile corresponding to $\tau=\Delta t=0.5 \cdot 10^{-6} \sec$ (points P_{2} and P_{2}), which define the width of the plastic wave.

For the materials considered and with the corresponding values of Δt, the function $\Delta l(M)$ can be represented in the form

$$
\begin{equation*}
\Delta l=L e^{k\left(M^{*}-M\right)} . \tag{4.1}
\end{equation*}
$$

Values of the coefficients L and K and the corresponding values of Δt are given in Table 3. The form of formula (4.1), determined by the nature of the relation (1.2), (1.3) for the time of relaxation, shows that the stationary two-wave configuration observed experimentally in metals presents difficulties. For other materials, in which this relation may be not so sharp a similar investigation is possible. Papers [10, 11] are devoted to these experimental investigations in Plexiglas.

Fig. 4

Finally, for shock waves propagating with velocities corresponding to Mach numbers $M>$ M^{*}, the profile of the shock waves has the structure depicted in Fig. 5. In Fig. 5, curves 1 and 2 depict $-\sigma_{x}$ and $-\sigma_{y}$, respectively, for lead ($M=1.179$). The point Q shows the magnitude of the elastic discontinuity.

As the magnitude of τ between the points P_{1} and Q is less than Δt, then according to [4] the section (P_{1}, Q) cannot be distinguished and the section ($P_{1}, 0$) may be regarded as of a single wave.

When the velocity of the wave is increased, as the graphs of the plastic and hydrodynamic adiabats show (see Fig. 1), the difference between the values behind the wave, calculated by the ratios in the plastic wave and by the ratios in the wave in hydrodynamic approximation, becomes insignificant. This serves as evidence that hydrodynamic approximation can be used for strong shock waves.

The authors thank S. K. Godunov for advice on the preparation of this paper.

IITERATURE CITED

1. S. K. Godunov and E. I. Romenskii, "Non-steady-state equations of the nonlinear theory of elasticity," Zh. Priki. Mekh. Tekh. Fiz., No. 6 (1972).
2. S. K. Godunov, N. S. Kozin, and E. I. Romenskii, "Use of the Zharkov-Kalinin equations of state for calculating the elastic energy in the case of a nonspherical deformation tensor," Zh. Prikl. Mekh. Tekh. Fiz., No. 2 (1974).
3. V. V. Denisenko, S. K. Godunov, N. S. Kozin, and N. K. Kuz'mina, "Application of viscoelastic relaxation theory in the calculation of uniaxial uniform definitions and the refinement of the interpolation formulas of Maxwellian viscosity," Zh. Prikl. Mekh. Tekh. Fiz., No. 5 (1975).
4. S. K. Godunov and N. S. Kozin, "Structure of shock waves in an elastic-viscous medium," Zh. Prikl. Mekh. Tekh. Fiz., No. 5 (1974).
5. M. L. Wilkins, "Calculation of elastoplastic flows," in: Numerical Methods in Hydrodynamics [Russian translation], Mir, Moscow (1967).
6. N. S. Kozin, "Shock adiabats and shock wave profiles in aluminum," in: Preprints of the Computation Center of the Siberian Division of the Academy of Sciences of the SSSR [in Russian], Novosibirsk (1975).
7. N. S. Kozin and N. K. Kuz'mina, "Shock adiabats and shock wave profiles in copper," in: Preprint of the Computation Center of the Siberian Division of the Academy of Sciences of the SSSR [in Russian], Novosibirsk (1975).
8. N. S. Kozin and N. K. Kuz'mina, "Shock adiabats and shock wave profiles in iron," in: Preprints of the Computation Center of the Siberian Division of the Academy of Sciences of the SSSR [in Russian], Novosibirsk (1975).
9. N. S. Kozin and N. K. Kuz'mina, "Shock adiabats and shock wave profiles in lead," in: Preprints of the Computation Center of the Siberian Division of the Academy of Sciences of the SSSR [in Russian], Novosibirsk (1975).
10. K. M. Shuler and J. W. Nunziano, "Recent results in nonlinear viscoelastic wave propagation," Int. J. Solids Struct., 9 , No. 10 (1973).
11. J. W. Nunziano and E. K. Walsh, "Amplitude behavior of shock waves in thermoviscoelastic solids," Int. J. Solids Struct., 9, No. 11 (1973).
